Technology  >  Heat Treatment   >  Carburizing  &  Carbonitriding

CARBURIZING is a case-hardening process in which carbon is dissolved in the surface layers of a low-carbon steel part at a temperature sufficient to render the steel austenitic, followed by quenching and tempering to form a martensitic microstructure. The resulting gradient in carbon content below the surface of the part causes a gradient in hardness, producing a strong, wear-resistant surface layer on a material, usually low-carbon steel, which is readily fabricated into parts. In gas carburizing, commercially the most important variant of carburizing, the source of carbon is a carbon-rich furnace atmosphere produced either from gaseous hydrocarbons, for example, methane (CH4), propane (C3H3), and butane (C4H10), or from vaporized hydro-carbon liquids.

VACUUM CARBURIZING is a non-equilibrium, boost-diffusion-type carburizing process in which the steel being processed is austenitized in a rough vacuum, carburized in a partial pressure of hydrocarbon gas, diffused in a rough vacuum, and then quenched in either oil or gas. Compared to conventional atmosphere carburizing (see the articles "Gas Carburizing" and "Pack Carburizing" in this Volume), vacuum carburizing offers excellent uniformity and repeatability because of the high degree of process control possible with vacuum furnaces, improved mechanical properties due to the lack of intergranular oxidation, and potentially reduced cycle times particularly when the higher process temperatures possible with vacuum furnaces are used.

CARBONITRIDING is a modified form of gas carburizing, rather than a form of nitriding. The modification consists of introducing ammonia into the gas carburizing atmosphere to add nitrogen to the carburized case as it is being produced. Nascent nitrogen forms at the work surface by the dissociation of ammonia in the furnace atmosphere; the nitrogen diffuses into the steel simultaneously with carbon. Typically, carbonitriding is carried out at a lower temperature and for a shorter time than is gas carburizing, producing a shallower case than is usual in production carburizing.

In its effects on steel, carbonitriding is similar to liquid cyaniding. Because of problems in disposing of cyanide-bearing wastes, carbonitriding is often preferred over liquid cyaniding. In terms of case characteristics, carbonitriding differs from carburizing and nitriding in that carburized cases normally do not contain nitrogen, and nitrided cases contain nitrogen primarily, whereas carbonitrided cases contain both.

Carbonitriding is used primarily to impart a hard, wear-resistant case, generally from 0.075 to 0.75 mm (0.003 to 0.030 in.) deep. A carbonitrided case has better hardenability than a carburized case (nitrogen increases the hardenability of steel; it is also an austenite stabilizer, and high nitrogen levels can result in retained austenite, particularly in alloy steels). Consequently, by carbonitriding and quenching, a hardened case can be produced at less expense within the case-depth range indicated, using either carbon or low-alloy steel. Full hardness with less distortion can be achieved with oil quenching, or, in some instances, even gas quenching, employing a protective atmosphere as the quenching medium.

Steels commonly carbonitrided include those in the 1000, 1100, 1200, 1300, 1500, 4000, 4100, 4600, 5100, 6100, 8600, and 8700 series, with carbon contents up to about 0.25%. Also, many steels in these same series with a carbon range of 0.30 to 0.50% are carbonitrided to case depths up to about 0.3 mm (0.01 in.) when a combination of a reasonably tough, through-hardened core and a hard, long-wearing surface is required (shafts and transmission gears are typical examples). Steels such as 4140, 5130, 5140, 8640, and 4340 for applications like heavy-duty gearing are treated by this method at 845 C (1550 F).

Often, carburizing and carbonitriding are used together to achieve much deeper case depths and better engineering performance for parts than could be obtained using only the carbonitriding process. This process is applicable particularly with steels with low case hardenability, that is, the 1000, 1100, and 1200 series steels. The process generally consists of carburizing at 900 to 955 C (1650 to 1750 F) to give the desired total case depth (up to 2.5 mm, or 0.100 in.), followed by carbonitriding for 2 to 6 h in the temperature range of 815 to 900 C (1500 to 1650 F) to add the desired carbonitrided case depth. The subject parts can then be oil quenched to obtain a deeper effective and thus harder case than would have resulted from the carburizing process alone. The addition of the carbonitrided surface increases the case residual compressive stress level and thus improves contact fatigue resistance as well as increasing the case strength gradient.

When the carburizing/carbonitriding processes are used together, the effective case depth (50 HRC) to total case depth ratio may vary from about 0.35 to 0.75 depending on the case hardenability, core hardenability, section size, and quenchant used. A more shallow effective or total case depth can be achieved with a given carbonitriding process by using fine grain steels containing higher amounts of aluminum or titanium. The nitrogen from the process forms nitrides with the aluminum or titanium. The combined nitrogen does not improve case hardenability.

The fundamental problem in controlling carbonitriding processes is that the rate of nitrogen pick-up depends on the free ammonia content of the furnace atmosphere and not the percentage of ammonia in the inlet gas. Unfortunately, no state-of-the-art sensor for monitoring the free ammonia content of the furnace atmosphere has yet been developed.